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Abstract: Superpositions of Ornstein-Uhlenbeck type (supOU) processes form a
rich class of stationary processes with a flexible dependence structure. The asymptotic
behavior of the integrated and partial sum supOU processes can be, however, unusual.
Their cumulants and moments turn out to have an unexpected rate of growth. We identify
the property of fast growth of moments or cumulants as intermittency.

1 Introduction

Lévy driven Ornstein-Uhlenbeck (OU) processes form a rich class of stationary pro-
cesses with mixing properties. They can have any selfdecomposable distribution as their
marginal distribution. Superpositions of OU type (supOU) processes were introduced
by Barndorff-Nielsen in Barndorff-Nielsen (1997) and Barndorff-Nielsen (2001) using a
construction that was later generalized to obtain Lévy mixing processes (see Barndorff-
Nielsen et al. (2013)). The supOU processes are stationary processes with a flexible
dependence structure. A square integrable stationary process X(t), t ≥ 0, is said to
have short-range dependence if its correlation function is integrable and long-range de-
pendence if it is not integrable. It is possible for supOU processes to display not only
short-range dependence but also long-range dependence. SupOU processes have found
many applications, especially in finance where positive supOU processes are used in mod-
els for stochastic volatility; see Barndorff-Nielsen & Shephard (2001), Barndorff-Nielsen
& Stelzer (2013), Barndorff-Nielsen & Veraart (2013), Griffin & Steel (2010), Moser &
Stelzer (2011), Stelzer et al. (2015), Stelzer & Zavǐsin (2015).

In this paper we discuss the asymptotic properties of two variants of aggregated supOU
process: the integrated process obtained from a continuously observed supOU process and
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the partial sum process obtained from a discretely sampled supOU process. These are
of particular interest in finance where the integrated process represents the integrated
volatility (see e.g. Barndorff-Nielsen & Stelzer (2013)). When there are only finitely many
OU type processes in the superposition, the mixing property remains valid and implies the
convergence of the aggregated process to Brownian motion (see Grahovac et al. (2016)).
Problems arise when one considers an infinite superposition of OU type processes. This
paper provides a closer analysis to the corresponding behavior of moments and cumulants.
Several attempts have been made to associate that behavior to rates in limit theorems but
to no avail, see for example Barndorff-Nielsen & Leonenko (2005a), Leonenko & Taufer
(2005).

Intermittency, which will be defined below, refers to this unusual behavior of moments
and cumulants. Note that our definition of intermittency will be different from the one
used in Barndorff-Nielsen et al. (2014), Barndorff-Nielsen & Schmiegel (2009), Podol-
skij (2015), where intermittency is associated with stochastic volatility. Here, as in the
physics literature, intermittency is associated with the behavior of moments (Carmona &
Molchanov (1994), Zel’dovich et al. (1987)).

In order to study the asymptotic behavior of the aggregated processes, we investigate
how the cumulants and moments evolve in time. The classical limiting scheme for some
type of aggregated process Y = {Y (t), t ≥ 0} has the form{

Y (nt)

An

}
d→ {Z(t)} , (1)

with convergence in the sense of convergence of all finite dimensional distributions as
n→∞. By Lamperti’s theorem (see, for example, (Embrechts & Maejima 2002, Theorem
2.1.1)), the normalizing sequence is always of the form An = L(n)nH for some H > 0 and
L slowly varying at infinity. Moreover, the limiting process Z is H-self-similar, that is,
for any c > 0,

{Z(ct)} d
= {cHZ(t)},

where {·} d
= {·} denotes the equality of finite dimensional distributions. For self-similar

process, the moments evolve as a power function of time E|Z(t)|q = E|Z(1)|qtHq. Hence,
for the process Y satisfying a limit theorem in the form (1), one expects that

E|Y (nt)|q

Aqn
→ E|Z(t)|q, ∀t ≥ 0. (2)

Therefore, E|Y (t)|q grows roughly as tHq when t→∞. Indeed, ignoring the slowly-varying
function L and multiplicative constants, we have

E|Y (nt)|q ≈ nHqE|Z(t)|q ≈ nHqtHqE|Z(1)|q ≈ (nt)Hq,

and hence
E|Y (t)|q ≈ tHq as t→∞ (3)

(see Theorem 2.1 below for the precise statement).
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We study aggregated processes Y (t) arising from supOU processes with a regularly
varying correlation function and a marginal distribution having exponentially decaying
tails, so that, in particular, all moments are finite. We show that these aggregated pro-
cesses have a specific growth of moments: for a certain range of q, namely

E|Y (t)|q ≈ tq−α as t→∞. (4)

Relation (4) contradicts (3). Here α is the parameter related to the dependence structure
of the underlying supOU process (see Theorems 4.2 and 4.4 below).

We show that in our context the growth of the cumulants and moments is such that the
relation between (1) and (2) falls apart. We refer to this property as intermittency. The
term is usually used to describe models exhibiting a high degree of variability and appears
in different contexts across the literature; see e.g. Carmona & Molchanov (1994), Chen
& Dalang (2015), Frisch (1995), Gärtner et al. (2007), Khoshnevisan (2014), Zel’dovich
et al. (1987). Inspired by these approaches, we define intermittency as a property arising
from a particular growth of moments. A precise definition is given in Section 2. In that
section, we show that for intermittent processes a limit theorem as in (1) and convergence
of moments (2) do not work together (see Theorem 2.1 below).

Section 3 provides an overview of facts relevant for the definition and properties of
supOU processes. The expressions for cumulants are established for aggregated processes.
In Section 4, the growth of cumulants is analyzed and we show in Theorems 4.2 and 4.4
respectively that the integrated process and the partial sum of supOU processes can be
intermittent.

2 Intermittency

Intermittency is a property used to describe models exhibiting sharp fluctuations in time
and a high degree of variability. Terms such as multifractality, separation of scales, dy-
namo effect are often used together with intermittency. The term has a precise definition
in the theory of stochastic partial differential equations (SPDE), where it is character-
ized by the Lyapunov exponents (see e.g. Carmona & Molchanov (1994), Chen & Dalang
(2015), Khoshnevisan (2014), Zel’dovich et al. (1987)). The k-th moment Lyapunov ex-
ponent of a non-negative random field {ψ(t, x), t ≥ 0, x ∈ R} stationary in x is defined
by

γ(k) = lim
t→∞

logE (ψ(t, x))k

t
, (5)

assuming the limit exists and is finite. A random field {ψ(t, x)} is then said to be inter-
mittent if the sequence γ(k)/k, k ∈ N is strictly increasing, that is

γ(1) <
γ(2)

2
< · · · < γ(k)

k
< · · · .

This property can be shown to imply under some assumptions that the random field
has large peaks at different values of the space coordinate (see Khoshnevisan (2014),
Molchanov (1991) for details).
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We define intermittency as a property which indicates that the moments of the stochas-
tic process do not have a typical limiting behavior. Our focus will be on the behavior of
the moments of the process in time as characterized by the scaling function defined below.
The Lyapunov exponents are suitable for measuring the growth rate of random fields that
have moments that grow exponentially in time. On the other hand, the scaling function
is tailored for cumulative processes, e.g. partial sum process, whose limiting behavior is
investigated.

For a process Y = {Y (t), t ≥ 0}, let (0, q(Y )) denote the range of finite moments,
that is

q(Y ) = sup{q > 0 : E|Y (t)|q <∞ ∀t}.

Definition 2.1. The scaling function at point q ∈ (0, q(Y )) of the process Y is

τY (q) = lim
t→∞

logE|Y (t)|q

log t
, (6)

assuming the limit exists and is finite.

Note the difference between (5) and (6). In our context, it is the scaling function
(6) which is relevant. It can be shown that τY is always convex and q 7→ τY (q)/q is
non-decreasing (Grahovac et al. (2016)). Using the scaling function we characterize inter-
mittency as a strict increase in the mapping q 7→ τY (q)/q.

Definition 2.2. A stochastic process Y = {Y (t), t ≥ 0} is intermittent if there exist
p, r ∈ (0, q(Y )) such that

τY (p)

p
<
τY (r)

r
. (7)

If Y is a H-self-similar process, then τY (q) = Hq, and τY (q)/q is constant, therefore
the process is not intermittent. The following theorem shows that when the process Y is
not self-similar but has a typical limit behavior as described in the theorem (in particular,
convergence to a self-similar process after suitable normalization) and if the corresponding
moments converge, then its scaling function τY turns out to be the same as for the self-
similar process, namely τY (q) = Hq for some H > 0.

Theorem 2.1. Let Y = {Y (t), t ≥ 0} and Z = {Z(t), t ≥ 0} be two processes such that
Z(t) is nondegenerate for every t > 0 and suppose that for a sequence (An), An > 0,
limn→∞An =∞, one has {

Y (nt)

An

}
d→ {Z(t)} , (8)

with convergence in (8) in the sense of convergence of all finite dimensional distributions
as n→∞. Then there exists a constant H > 0 such that for every q > 0 satisfying

E|Y (nt)|q

Aqn
→ E|Z(t)|q, ∀t ≥ 0, (9)

the scaling function (6) of Y at q is

τY (q) = Hq. (10)
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Proof. By Lamperti’s theorem (see, for example, (Embrechts & Maejima 2002, Theorem
2.1.1)), (8) implies the process Z is H-self-similar with H > 0 and An is of the form

An = nHL(n)

for some function L slowly varying at infinity. It follows from (9) that

log
E|Y (nt)|q

Aqn
= logE|Y (nt)|q − log(nHL(n))q

= log n

(
logE|Y (nt)|q

log nt

log nt

log n
− q

log
(
nHL(n)

)
log n

)
→ logE|Z(t)|q as n→∞.

Thus the factor in the parentheses that multiplies log n in the above equation must
tend to zero as n → ∞. Since log nt/ log n → 1 as n → ∞, by (Bingham et al. 1989,
Proposition 1.3.6(i))

lim
n→∞

logE|Y (nt)|q

log nt
= lim

n→∞
q

log
(
nHL(n)

)
log n

= Hq + lim
n→∞

q
logL(n)

log n
= Hq.

Hence τY (q) = Hq.

Remark 2.1. Assumption (8) is the typical form in which limit theorems appear with
Y being a partial sum process or an integrated process. The limiting process is always
self-similar, and the normalizing sequence is regularly varying. If in addition to (8) conver-
gence of moments holds, then Y has a linear scaling function (10) and is not intermittent.
Therefore, in the intermittent case either (8) or (9) or both must fail to hold.

Remark 2.2. Notice that the scaling function involves only the one-dimensional marginal
distributions of the process. Moreover, the conclusion of Theorem 2.1 holds if we assume
that convergence in (8) holds only for one-dimensional marginals. Indeed, from the proof
of Lamperti’s theorem (Embrechts & Maejima 2002, Theorem 2.1.1)) this is enough to
imply that An = nHL(n), and the same argument as in the proof of Theorem 2.1 applies.

Remark 2.3. The relation between (8) and (9) is a well known problem. In one direction,
for a sequence of random variables convergence of moments implies weak convergence if
the limiting distribution is uniquely determined by its moments. The question whether
this is true is known as the moment problem (see e.g. (Stoyanov 1997, Section 11.) and
references therein). On the other hand, for a sequence of random variables convergence
of moments is implied by the weak convergence if the appropriately transformed sequence
is uniformly integrable.

Depending on the problem considered, it may be easier to establish intermittency by
considering cumulants instead of moments. For m ∈ N and t ≥ 0, let κ

(m)
Y (t) denote the

m-th order cumulant of Y (t). The corresponding cumulant variant of the scaling function
can be defined as

σY (m) = lim
t→∞

log
∣∣∣κ(m)
Y (t)

∣∣∣
log t

, m ∈ N, (11)
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assuming κ
(m)
Y (t) 6= 0 and the limit exists and is finite. When the form of σY is established,

the relation between moments and cumulants can be used to obtain the expression for τY .
Note, however, that both (6) and (11) involve absolute values.

In the next section, we review basic facts about the supOU processes. These provide
great flexibility in modeling of stationary phenomena. This is becuse a supOU process
can be chosen to have any selfdecomposable distribution as its marginal distribution
and a variety of correlation structures. Some particular choices will lead to intermittent
cumulative processes.

3 SupOU processes

In order to define superpositions of OU type processes we introduce some notation and
review basic facts about random measures and OU type processes.

3.1 Preliminaries

Let
κY (ζ) = C {ζ ‡ Y } = logEeiζY

denote the cumulant (generating) function of a random variable Y and, assuming it exists,

κ
(m)
Y for m ∈ N will denote the m-th cumulant of Y , that is

κ
(m)
Y = (−i)m dm

dζm
κY (ζ)

∣∣
ζ=0

.

If κY (·) is analytic around the origin, then

κY (ζ) =
∞∑
m=1

(iζ)m

m!
κ
(m)
Y . (12)

For a stochastic process Y = {Y (t)} we write κY (ζ, t) = κY (t)(ζ), and by suppressing t
we mean

κY (ζ) = κY (ζ, 1),

that is, the cumulant function of the random variable Y (1). Similarly, for the cumulants of

Y (t), we use the notation κ
(m)
Y (t) and κ

(m)
Y for κ

(m)
Y (1). Recall that the cumulant function

of an infinitely divisible random variable Y has the Lévy-Khintchine representation

C {ζ ‡ Y } = iaζ − b

2
ζ2 +

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
µ(dx), ζ ∈ R

where a ∈ R, b > 0, and the Lévy measure µ is a deterministic Radon measure on R\{0}
such that µ ({0}) = 0 and

∫
R min {1, x2}µ(dx) <∞. The triplet

(a, b, µ)
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is referred to as the characteristic triplet. A stochastic process {L(t), t ≥ 0} with sta-
tionary, independent increments and continuous in probability (L(t) →P 0 as t → 0)
has a càdlàg modification which we refer to as a Lévy process. For any infinitely divis-
ible random variable Y , there is a corresponding Lévy process {L(t), t ≥ 0} such that
Y =d L(1).

An infinitely divisible random variable X is selfdecomposable if its characteristic func-
tion φ(θ) = EeiθX , θ ∈ R, has the property that for every c ∈ (0, 1) there exists a
characteristic function φc such that

φ(θ) = φ(cθ)φc(θ)

for all θ ∈ R. This means that that X has the same distribution as cX + Zc, where X
and Zc and independent, and Zc has the characteristic function φc. In this case, X can
be represented as

X =

∫ ∞
0

e−sdL(s), (13)

where L = {L(t), t ≥ 0} is a Lévy process whose law is determined uniquely by that of
X. The process L is called the background driving Lévy process (BDLP) corresponding
to the infinitely divisible random variable X. The cumulant functions of X and L(1) are
related by

κX(ζ) =

∫ ∞
0

κL(e−sζ)ds. (14)

From (Jurek 2001, Corollary 1) κX is differentiable for ζ 6= 0, ζκ′X(ζ) → 0 as 0 6= ζ → 0
and

κL(ζ) = ζκ′X(ζ). (15)

The BDLP L can be extended to a two-sided Lévy process by putting for t < 0, L(t) =

−L̃(−t−) where {L̃(t), t ≥ 0} is an independent copy of the process {L(t), t ≥ 0}modified
to be càdlàg.

The Ornstein-Uhlenbeck type (OU) process is a process {X(t), t ∈ R} defined by

X(t) = e−λt
∫ t

−∞
eλsdL(λs) =

∫
R
e−λt+s1[0,∞)(λt− s)dL(s), (16)

where λ > 0. It can be shown that {X(t), t ∈ R} is strictly stationary with the stationary
distribution equal to the selfdecomposable law of X corresponding to the BDLP L. When
X(t) has a finite second moment, the correlation function is (see Barndorff-Nielsen (2001))

r(τ) = e−λτ , τ ≥ 0.

Alternatively, starting with a Lévy process L satisfying E log (1 + |L(1)|) < ∞, one can
define an OU type process as a stationary solution of the stochastic differential equation

dX(t) = −λX(t)dt+ dL(λt).

We now turn to supOU processes. To define them, we need some basic facts about
infinitely divisible independently scattered random measures (i.d.i.s.r.m.). Let S be a Borel
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subset of Rd and let S be a σ-ring of S (i.e. countable unions of sets in S belong to S and
if A and B are sets in S with A ⊂ B, then B\A ∈ S). A collection of random variables
Λ = {Λ(A), A ∈ S} defined on a probability space (Ω,F , P ) is said to be an independently
scattered random measure if for every sequence {An} of disjoint sets in S, the random
variables Λ(An), n = 1, 2, ... are independent and if

Λ

(
∞⋃
n=1

An

)
=
∞∑
n=1

Λ(An) a.s.

whenever
⋃∞
n=1An ∈ S. We will be interested in the case when Λ is infinitely divisible,

that is, for each A ∈ S, Λ(A) is an infinitely divisible random variable whose cumulant
function can be written as

C {ζ ‡ Λ(A)} = iζm0(A)− ζ2

2
m1(A) +

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
Q(A, dx),

where m0 is a signed measure, m1 is a positive measure and for every A ∈ S, Q(A, dx) is a
measure on B(R) without atom at 0 such that

∫
R min {1, x2}Q(A, dx) <∞. In this case

we say that Λ has the Lévy characteristics (m0,m1, Q) and Q is called the generalized
(deterministic) Lévy measure. An important object in characterizing the class of non-
random functions that are integrable with respect to Λ is the control measure m defined
as

m(A) = |m0| (A) +m1(A) +

∫
R

min
{

1, x2
}
Q(A, dx).

The conditions for integrability of functions with respect to Λ can be found in Barndorff-
Nielsen (2001) and Rajput & Rosinski (1989). If function f on R+×R is integrable with
respect to the random measure Λ, then the cumulant function of the random variable∫
A
fdΛ is

C

{
ζ ‡
∫
A

fdΛ

}
=

∫
A

κL(ζf(w))M(dw) (17)

where κL is the cumulant function associated with the Lévy basis Λ. More details on
integration can be found in Rajput & Rosinski (1989).

In defining the stationary supOU processes we will be interested in the homogeneous
case where the characteristic triplet is of the form

m0 = aM, m1 = bM and Q(dw, dx) = M(dw)µL(dx),

where a ∈ R, b > 0, µL is a Lévy measure and M is a measure on S. Note that M and
µL are deterministic. Then the cumulant function of the random variable Λ(A) is

C {ζ ‡ Λ(A)} = M(A)κL(ζ) (18)

where κL is the cumulant function associated with the triplet (a, b, µL), i.e.

κL(ζ) = iζa− ζ2

2
b+

∫
R

(
eiζx − 1− iζ1[−1,1](x)

)
µL(dx). (19)

For more details see also Barndorff-Nielsen et al. (2013), Barndorff-Nielsen & Stelzer
(2011, 2013), Fasen & Klüppelberg (2007) where such measures are also referred to as
Lévy bases.
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3.2 SupOU processes

Although OU type processes provide a rich class of stationary models, their correlation
structure is rather limited from the modeling perspective. On the other hand, super-
positions of OU type processes introduced in Barndorff-Nielsen (2001) provide far more
flexibility and can exhibit long-range dependence. They are obtained by randomizing the
parameter λ in (16), using a probability measure π with support in R+. The probabil-
ity measure π will affect the dependence structure. We present basic facts about these
processes following Barndorff-Nielsen (2001) and Fasen & Klüppelberg (2007) (see also
Barndorff-Nielsen et al. (2013)).

Suppose Λ is a homogenous infinitely divisible independently scattered random mea-
sures on S = R+ × R such that (18) holds with M = π × Leb being the product of a
probability measure π on R+ and the Lebesgue measure on R. We say that

(a, b, µL, π)

is the generating quadruple (Fasen & Klüppelberg (2007)) and the corresponding inde-
pendently scattered random measure Λ will be referred to as the Lévy basis.

The following result gives the existence of a superposition Ornstein-Uhlenbeck process;
see (Barndorff-Nielsen 2001, Theorem 3.1). We denote the points in R+×R as w = (ξ, s)
and Λ(dw) = Λ(dξ, ds).

Theorem 3.1. Let κX be the cumulant function of some selfdecomposable law, (a, b, µL)
be the characteristic triplet of the associated BDLP with cumulant function κL and let
π be a probability measure on R+. Define the Lévy basis Λ on R+ × R with generating
quadruple (a, b, µL, π) and set

X(t) =

∫
R+

e−ξt
∫ ξt

−∞
esΛ(dξ, ds) =

∫
R+

∫
R
e−ξt+s1[0,∞)(ξt− s)Λ(dξ, ds). (20)

Then X = {X(t), t ∈ R} is a well-defined, infinitely divisible and strictly stationary
process.

Moreover, for t1 < · · · < tm, the joint cumulant function of (X(t1), · · · , X(tm) is

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))}

=

∫
R+

∫
R
κL

(
m∑
j=1

1[0,∞)(ξtj − s)ζje−ξtj+s
)
ds π(dξ). (21)

In particular, since X = {X(t), t ∈ R} is stationary,

C {ζ ‡X(t)} = κX(ζ),

and assuming that X(t) has finite second moment, its correlation function is given by

r(τ) =

∫
R+

e−τξπ(dξ), τ ≥ 0. (22)
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Definition 3.1. The process X = {X(t), t ∈ R} defined by (20) in Theorem 3.1 is called
a superposition Ornstein-Uhlenbeck (supOU) process.

Relation (22) is obtained by setting m = 2 in (21), taking derivatives with respect to
ζ1 and ζ2 and letting them tend to 0. By comparing the definition of superposition (20)
with the standard OU type process (16), one can see the supOU process is obtained by
randomizing the parameter λ in (16) according to the probability measure π. A choice
of π will play an important role. Taking π as in (24) below will make X long-range
dependent.

Remark 3.1. Here is a summary of the measures involved. The supOU process X(t) in
(20) is defined through an integral involving the random measure Λ(dξ, ds). For a fixed
t, the corresponding cumulant function is

κX(ζ) = C {ζ ‡X(t)} =

∫
R+

∫
R
κL
(
1[0,∞)(ξt− s)ζe−ξt+s

)
ds π(dξ)

where κL given in (19) is associated with the Lévy basis Λ and involves the Lévy measure
µL. The cumulant function κX thus involves the corresponding deterministic measure

Q(dw, dx) = M(dw)µL(dx) = π(dξ)Leb(ds)µL(dx),

where w = (ξ, s).

Remark 3.2. In Fasen & Klüppelberg (2007), a supOU process is defined as

X̃(t) =

∫
R+

∫
R
e−ξ(t−s)1[0,∞)(t− s)Λ̃(dξ, ds), (23)

where Λ̃ has generating quadruple (ã, b̃, µ̃L, π̃) such that ρ :=
∫
R+
ξ−1π̃(dξ) <∞. However,

the two approaches are equivalent. Taking a = ρã, b = ρb̃, µL = ρµ̃L and π(dξ) =
ρ−1ξ−1π̃(dξ) in Theorem 3.1, we obtain a process which has the same law as the process

X̃ defined in (23) (see (Fasen & Klüppelberg 2007, Proposition 2.1)).

Example 3.1. If the measure π in (21) is degenerate such that π ({λ}) = 1 for some
λ > 0, then it follows from (21) that the finite dimensional distributions of X are the
same as for the standard OU type process (16), that is

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))} =

∫
R
κL

(
m∑
j=1

1[0,∞)(λtj − s)ζje−λtj+s
)
ds.

Example 3.2. Suppose π in (21) is a discrete probability measure such that π ({λk}) =
pk, k ∈ N and λk > 0. Then we have that

C {ζ1, . . . , ζm ‡ (X(t1), . . . , X(tm))} =
∞∑
k=1

∫
R
pkκL

(
m∑
j=1

1[0,∞)(λktj − s)ζje−λktj+s
)
ds.
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Thus in this case X has the same distribution as the infinite discrete type superposition{
∞∑
k=1

X(k)(t), t ∈ R

}
,

where {X(k)(t), t ∈ R}, k ∈ N are independent standard OU type processes corresponding
to parameter λk and BDLP with cumulant function pkκL, k ∈ N. In the case of finite
second moment, such discrete type superposition is well defined in the sense of L2 and
a.s. convergence (see Grahovac et al. (2016)), and from (22) the correlation function is

r(τ) =
∞∑
k=1

e−λkτpk, τ ≥ 0.

By appropriate choices of probability measure π one can achieve different correlation
structures of the supOU processes. We will use the notation f ∼ g if f(x)/g(x) → 1 as
x→ 0 or x→∞. It follows from (22) that the correlation function can be considered as
the Laplace transform of π. Using Karamata’s Tauberian theorem (Bingham et al. 1989,
Theorem 1.7.1′) one can easily obtain the following result (Fasen & Klüppelberg (2007)).

Proposition 3.1. Suppose X is a square integrable supOU process with correlation func-
tion r, L is a slowly varying function at infinity and α > 0. Then

π ((0, x]) ∼ L(x−1)xα, as x→ 0 (24)

if and only if
r(τ) ∼ Γ(1 + α)L(τ)τ−α, as τ →∞. (25)

The bigger the mass of π is near the origin, the slower is the decay of the correlation
function at infinity. Hence, in view of (25), if α ∈ (0, 1) the correlation function is not
integrable, and supOU process exhibits long-range dependence. We will denote

α = 2H = 2(1−H)

with H as the long-range dependence parameter. Hence α ∈ (0, 1) corresponds to H ∈
(1/2, 1). More details on the dependence structure in specific examples can be found in
Barndorff-Nielsen & Leonenko (2005b).

Example 3.3. Suppose X is a supOU process such that π is Gamma distribution with
density

f(x) =
1

Γ(α)
xα−1e−x1(0,∞)(x),

where α > 0. Then

π((0, x]) =
γ(α, x)

Γ(α)
, x > 0,

where γ(α, x) =
∫ x
0
uα−1e−udu is the incomplete Gamma function. From the asymptotic

expansion of γ ((Abramowitz & Stegun 1964, Eq. 6.5.4 and Eq. 6.5.29)) we have that

π((0, x]) ∼ 1

Γ(α + 1)
xα, as x→ 0.
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By Lemma 3.1 the correlation function has the property

r(τ) ∼ τ−α, as τ →∞.

In this case, we can explicitly compute from (22) that

r(τ) =

∫ ∞
0

e−τx
1

Γ(α)
xα−1e−xdx = (1 + τ)−α

1

Γ(α)

∫ ∞
0

xα−1e−xdx = (1 + τ)−α.

Note that for α ∈ (0, 1] the correlation function exhibits long-range dependence, while for
α > 1 short-range dependence.

Example 3.4. If π is the Mittag-Leffler distribution, then the correlation function of the
supOU process is

r(τ) = (1 + τα)−1, 0 < α < 2.

The supOU process obtained in this way is long-range dependent for α ∈ (0, 1] and short-
range dependent for α ∈ (1, 2).

Example 3.5. Another long-range dependent example can be obtained with

r(τ) = Eα(−τ γ), γ ∈ (0, 1), α ∈ (0, 1),

where

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C,

is the Mittag-Leffler function. In this case

r(τ) ∼ τ−γ

Γ(1− α)
, as τ →∞.

See (Barndorff-Nielsen & Leonenko 2005b, Example 4) for details.

In our study of intermittency we will be concerned with the cumulant properties of
integrated and partial sum process of supOU process. Tractable expressions for cumulant
functions in both cases are established in the following subsections.

3.3 Integrated process

Suppose X is a supOU process defined in (20) and let X∗ = {X∗(t), t ≥ 0} be the
integrated process

X∗(t) =

∫ t

0

X(s)ds. (26)

For a, b ∈ R, let

ε(a, b) =
1

b

(
1− e−ab

)
and recall that κX∗(ζ, t) and κ

(m)
X∗ (t) denote the cumulant function and the m-th order

cumulant of X∗(t), respectively.
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Proposition 3.2 (Theorem 4.1 in Barndorff-Nielsen (2001)). The cumulant function κX∗
of X∗(t) satisfies

κX∗(ζ, t) = ζ

∫ ∞
0

∫ t

0

κ′X (ε(s, ξ)ζ) ds π(dξ), (27)

where κX(ζ) is the cumulant function of X(1).

Proposition 3.3 (Theorem 4.2 in Barndorff-Nielsen (2001)). Assume that κX is analytic
in a neighborhood of the origin. The cumulants of X∗(t) are then given by

κ
(m)
X∗ (t) = κ

(m)
X mIm−1(t) (28)

where the κ
(m)
X are the cumulants of X(1),

Im−1(t) =

∫ ∞
0

(
am−1 + tξ +

m−1∑
k=1

(−1)k−1
(
m− 1

k

)
1

k
e−ktξ

)
ξ−mπ(dξ) (29)

with

am−1 =
m−1∑
k=1

(−1)k
(
m− 1

k

)
1

k
. (30)

The analyticity of the κX in Proposition 3.3 ensures the existence of all the cumulants
of the marginal distribution of the underlying supOU processX. Note also that analyticity
does not depend on the measure π since the choice of π does not affect the one-dimensional
marginal distribution of X. The following is a useful criterion (Lukacs 1970, Theorem
7.2.1) for checking analyticity of the cumulant function.

Lemma 3.1. The characteristic and cumulant functions are analytic in a neighborhood
of the origin if and only if there is a constant C such that the corresponding distribution
function F satisfies

1− F (x) + F (−x) = O(e−ux), as x→∞,

for all 0 < u < C.

It follows from Lemma 3.1 that the cumulant function of X(t) is analytic in the
neighborhood of the origin if there exists a > 0 such that

Eea|X(t)| <∞.

This implies in particular that all the moments and cumulants of X(t) exist. This condi-
tion is satisfied for many selfdecomposable distributions.

Example 3.6. The inverse Gaussian distribution

IG(δ, γ), γ > 0, δ > 0,

13



with density

fIG(δ,γ)(x) =
δ√
2π
eδγx−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
1(0,∞)(x)

is selfdecomposable and hence, for any choice of probability measure π, there exists a
supOU process X with IG(δ, γ) stationary distribution. Since exponential moments are
finite, the cumulant generating function is analytic in a neighborhood of the origin and
has the form

κX(ζ) = δ
(
γ −

√
γ2 − 2iζ

)
.

Example 3.7. The normal inverse Gaussian distribution

NIG(α, β, δ, µ), α ≥ |β| , δ > 0, µ ∈ R

is another example of selfdecomposable distribution. The density of NIG(α, β, δ, µ) dis-
tribution satisfies (see Barndorff-Nielsen (1997))

fNIG(α,β,δ,µ)(x) ∼ C|x|−3/2e−α|x|+βx, as x→ ±∞.

Hence, there is a > 0 such that Eea|X(t)| <∞, the cumulant generating function is analytic
in a neighborhood of the origin and has the form

κX(ζ) = iµζ + δ

(√
α2 − β2 −

√
α2 − (β + iζ)2

)
.

Other examples of supOU processes satisfying conditions of Proposition 3.3 can be
obtained by taking the marginal distribution to be gamma, variance gamma, tempered
stable, Eulers gamma, or z-distribution. See Barndorff-Nielsen & Leonenko (2005b) and
Grahovac et al. (2016) for more details. On the other hand, the Student’s t-distribution

T (ν, δ, µ), ν > 0, δ > 0, µ ∈ R

whose density is

fT (ν,δ,µ)(x) =
Γ
(
ν+1
2

)
δΓ
(
1
2

)
Γ
(
ν
2

) (1 +

(
x− µ
δ

)2
)− ν+1

2

, x ∈ R,

provides an example of a self-decomposable distribution for which the cumulant function
is not analytic around the origin since E|X|q =∞ for q > ν (see e.g. Heyde & Leonenko
(2005)).

It is worth noting that one can obtain expressions for cumulants without assuming
analyticity. In fact, taking derivatives with respect to ζ in (27) and letting ζ → 0, one re-
covers the formula (28). This approach can be used to investigate cumulants and moments
when they exists only up to some finite order, as in the case of Student’s distribution. In
this paper we assume analyticity in order not to complicate the exposition.
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3.4 Partial sum process

In addition to the integrated process, we also consider partial sums of a discretely sampled
supOU process. Let

X+(t) =

btc∑
i=1

X(i) (31)

and define

η(a, b) = e−b
1− e−ab

1− e−b
. (32)

The following two propositions establish the cumulant function and cumulants for the
partial sum process.

Proposition 3.4. The cumulant function κX+ of X+(t) satisfies

κX+(ζ, t) =

∫ ∞
0

 btc∑
k=1

(
κX
(
eξη (k, ξ) ζ

)
− κX

(
η (k, ξ) ζ

))
+ κX

(
η (btc, ξ) ζ

) π(dξ),

(33)
where κX(ζ) is the cumulant function of X(1).

Proof. From (20)

X+(t) =

btc∑
i=1

∫
R+

∫
R
e−ξi+s1[s/ξ,∞)(i)Λ(dξ, ds)

=

∫
R+

∫ 0

−∞

 btc∑
i=1

e−ξi+s

Λ(dξ, ds) +

∫
R+

∫ ξbtc

0

 btc∑
i=bs/ξc+1

e−ξi+s

Λ(dξ, ds)

=

∫
R+

∫ 0

−∞
esη (btc, ξ) Λ(dξ, ds) +

∫
R+

∫ ξbtc

0

 btc∑
i=bs/ξc+1

e−ξi+s

Λ(dξ, ds).

Using (17) and then (14) we get

κX+(ζ, t)

=

∫ ∞
0

∫ 0

−∞
κL

(
esη
(
btc, ξ

)
ζ

)
ds π(dξ) +

∫ ∞
0

∫ ξbtc

0

κL

 btc∑
i=bs/ξc+1

e−ξi+sζ

 ds π(dξ)

=

∫ ∞
0

∫ ∞
0

κL

(
e−sη

(
btc, ξ

)
ζ

)
ds π(dξ) +

∫ ∞
0

∫ btc
0

ξκL

 btc∑
i=buc+1

e−ξi+ξuζ

 du π(dξ)

=

∫ ∞
0

κX

(
η
(
btc, ξ

)
ζ

)
π(dξ) +

∫ ∞
0

∫ btc
0

ξκL

 btc∑
i=buc+1

e−ξi+ξuζ

 du π(dξ). (34)
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Note that all integrals in (34) are finite because the cumulant function κL is absolutely
integrable with respect to the control measure, see (Rajput & Rosinski 1989, Proposition
2.6). For the second integral on the right, by computing the partial sum of the geometric
sequence we have ∫ ∞

0

∫ btc
0

ξκL

 btc∑
i=buc+1

e−ξi+ξuζ

 du π(dξ)

=

∫ ∞
0

ξ

btc−1∑
k=0

∫ k+1

k

κL

eξu btc∑
i=k+1

e−ξiζ

 du π(dξ)

=

∫ ∞
0

ξ

btc−1∑
k=0

∫ k+1

k

κL

(
e−ξ(k−u)η

(
btc − k, ξ

)
ζ

)
du π(dξ).

The change of variables s = k − u+ 1 and (15) yield∫ ∞
0

∫ btc
0

ξκL

 btc∑
i=buc+1

e−ξi+ξuζ

 du π(dξ)

=

∫ ∞
0

ξ

btc−1∑
k=0

∫ 1

0

κL

(
e−ξ(s−1)η

(
btc − k, ξ

)
ζ

)
ds π(dξ)

=

∫ ∞
0

ξ

btc−1∑
k=0

∫ 1

0

e−ξ(s−1)η
(
btc − k, ξ

)
ζκ′X

(
e−ξ(s−1)η

(
btc − k, ξ

)
ζ

)
ds π(dξ)

=

∫ ∞
0

btc−1∑
k=0

(
κX

(
eξη
(
btc − k, ξ

)
ζ

)
− κX

(
η
(
btc − k, ξ

)
ζ

))
π(dξ)

=

∫ ∞
0

btc∑
k=1

(
κX

(
eξη
(
k, ξ
)
ζ

)
− κX

(
η
(
k, ξ
)
ζ

))
π(dξ).

Combining this with (34) yields (33).

Proposition 3.5. Assume that the cumulant function κX of X(t) is analytic in a neigh-
borhood of the origin. The cumulants of X+(t) are then given by

κ
(m)

X+ (t) = κ
(m)
X Jm−1(t)

where the κ
(m)
X are the cumulants of X(1) and

Jm−1(t) =

∫ ∞
0

((
1− e−mξ

)
(btc − 1) +

(
1− e−mξ

) m∑
j=1

(
m

j

)
(−1)je−jξ

1− e−j(btc−1)ξ

1− e−jξ

+
(
1− e−btcξ

)m) 1

(1− e−ξ)m
π(dξ).

(35)
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Proof. Using (12) and (33), expand the cumulant function of X to get

κX+(ζ, t)

=

∫ ∞
0

 btc∑
k=1

( ∞∑
m=1

κ
(m)
X

(
iζη
(
k, ξ
))m

m!

(
emξ − 1

))
+
∞∑
m=1

κ
(m)
X

(
iζη
(
btc, ξ

))m
m!

 π(dξ)

=
∞∑
m=1

κ
(m)
X

(iζ)m

m!

∫ ∞
0

 btc∑
k=1

η
(
k, ξ
)m (

emξ − 1
)

+ η
(
btc, ξ

)m π(dξ)

and by identifying the coefficients in the expansion, we get κ
(m)

X+ (t) = κ
(m)
X Jm−1(t), where

Jm−1(t) =

∫ ∞
0

 btc∑
k=1

η
(
k, ξ
)m (

emξ − 1
)

+ η
(
btc, ξ

)m π(dξ).

Use (32) to get

Jm−1(t)

=

∫ ∞
0

 btc∑
k=1

e−mξ
(
1− e−kξ

)m
(1− e−ξ)m

(
emξ − 1

)
+ e−mξ

(
1− e−btcξ

)m
(1− e−ξ)m

 π(dξ)

=

∫ ∞
0

1

(1− e−ξ)m

(1− e−mξ) btc−1∑
k=1

(
1− e−kξ

)m
+
(
1− e−btcξ

)m π(dξ) (36)

=

∫ ∞
0

(1− e−mξ) btc−1∑
k=1

m∑
j=0

(
m

j

)
(−1)je−jkξ +

(
1− e−btcξ

)m 1

(1− e−ξ)m
π(dξ)

=

∫ ∞
0

((
1− e−mξ

)
(btc − 1) +

(
1− e−mξ

) m∑
j=1

(
m

j

)
(−1)je−jξ

1− e−j(btc−1)ξ

1− e−jξ

+
(
1− e−btcξ

)m) 1

(1− e−ξ)m
π(dξ).

4 Intermittency of integrated and partial sum pro-

cess

In this section we establish asymptotic properties of cumulants and moments of the in-
tegrated supOU process X∗ defined in (26) and the partial sum process X+ defined in
(31). The underlying supOU process will be assumed to have a power law decay of the
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correlation function, which can be achieved with the appropriate choice of the probability
measure π, as given by Proposition 3.1. In the case of long-range dependence, we will
show that both variants of cumulative processes can be intermittent. Before doing that,
we provide examples where asymptotic normality easily follows.

Example 4.1. Consider a supOU process from Example 3.2 such that π is a discrete
probability measure with finite support

{λk : k = 1, . . . K} and π({λk}) = pk.

In this case, supOU process has the same distribution as the finite superposition X =
{X(t), t ∈ R} defined by

X(t) =
K∑
k=1

X(k)(t),

where {X(k)(t), t ∈ R}, k = 1, . . . , K are independent standard OU type processes corre-
sponding to parameter λk and BDLP with cumulant function pkκL, k = 1, . . . , K. Suppose
E|X(1)|2+δ < ∞ for some δ > 0 and let {S(t), t ≥ 0} denote the centered partial sum
process

S(t) =

btc∑
i=1

(X(i)− EX(i)) .

Each OU type process {X(k)(t), t ∈ R}, k = 1, . . . , K satisfies the strong mixing property
with an exponentially decaying rate of mixing coefficients (Masuda (2004)), and so does
a sequence X(i), i ∈ N as a finite sum of these processes. Application of the invariance
principle for strong mixing sequences (Davydov (1968); see also Oodaira & Yoshihara
(1972)) shows that

S(nt)

σ
√
n
⇒ B(t), t ∈ [0, 1],

as n → ∞, where {B(t), t ∈ [0, 1]} is a Brownian motion, σ positive constant and the
convergence is weak convergence in Skorokhod space D[0, 1]. In particular, (8) holds with
Y being the partial sum process and for every t ∈ [0, 1]

S(nt)

σ
√
n

d→ N (0, t),

as n → ∞. If q > 2 is such that E|X(1)|q < ∞, then by the result of Yokoyama (1980),
the q-th absolute moment of S(nt)/(σ

√
n) converges to that of N (0, t). Then by Theorem

2.1 the scaling function of the partial sum process S(t) is

τS(q) = q/2,

and there is no intermittency.
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Example 4.2. Let {X(t), t ≥ 0} be a Gaussian supOU process, that is a supOU process
with the generating quadruple

(0, σ2, 0, π),

where σ2 > 0 and π is a probability measure. One can check from (21) that X is indeed a
Gaussian process with zero mean. Suppose further that π satisfies (24) for some α > 0 so

that the correlation function satisfies (25). Let X+(t) =
∑btc

i=1X(i) be the corresponding
partial sum process.

When α < 1, long-range dependence is present, and from (Taqqu 1975, Lemma 5.1),
the normalized partial sum process

1

nH
√
L(n)

X+(nt)

with H = 1 − α/2, converges in Skorokhod space D[0, 1] to a process that is fractional
Brownian motion with Hurst parameter H up to a multiplicative constant. The par-
tial sum X+(t) is a mean zero Gaussian random variable with the variance satisfying
E (X+(t))

2 ∼ Cbtc2HL (btc) (see the proof of (Taqqu 1975, Lemma 5.1)). Since the q-
th absolute moment of a Gaussian distribution is proportional to the q-th power of the
standard deviation, it follows that

τX+(q) = Hq,

and there is no intermittency.
If α > 1, then the variance of X+(t) is of the order t1/2, and the finite-dimensional

distributions of
1

n1/2
X+(nt)

converge to those of the Brownian motion, see (Ivanov & Leonenko 1989, Theorem 2.3.1).
In the case α = 1, the limit is also Gaussian with an extra factor of a slowly varying
function in the variance and in the normalizing sequence of the partial sum, see (Ivanov
& Leonenko 1989, Theorem 2.3.2). The same argument as in the case α < 1 shows that
the scaling function is

τX+(q) = q/2,

and there is no intermittency.

To show that the integrated supOU process X∗(t) =
∫ t
0
X(s)ds can be intermittent,

we first establish the form of the cumulant based scaling function σX∗(m) defined in (11).

Recall that κ
(m)
X denotes the m-th cumulant of X(t). In particular, κ

(1)
X = EX(t).

Theorem 4.1. Suppose that the stationary supOU process X defined in (20) satisfies the
conditions of Proposition 3.1 and satisfies (24) with some α > 0. Further, suppose that
κX is analytic in a neighborhood of the origin and let σX∗ be the cumulant based scaling
function (11) of the integrated process {X∗(t), t ≥ 0}. If the mean κ

(1)
X 6= 0, then

σX∗(1) = 1,

and for every m > α + 1 such that κ
(m)
X 6= 0, we have

σX∗(m) = m− α.
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Proof. By Proposition 3.3 we have that

σX∗(m) = lim
t→∞

log
∣∣∣κ(m)
X∗ (t)

∣∣∣
log t

= lim
t→∞

log
∣∣∣κ(m)
X mIm−1(t)

∣∣∣
log t

= lim
t→∞

log |Im−1(t)|
log t

. (37)

From the expression (29) for Im−1(t) we obtain the following form

Im−1(t) =

∫ ∞
0

(
am−1 + tξ +

m−1∑
k=1

(−1)k−1
(
m− 1

k

)
1

k
e−ktξ

)
ξ−mπ(dξ) (38)

=

∫ ∞
0

∫ ξt

0

(
1 +

m−1∑
k=1

(−1)k
(
m− 1

k

)
e−kw

)
dwξ−mπ(dξ).

Hence

Im−1(t) =

∫ ∞
0

∫ ξt

0

(
1− e−w

)m−1
dwξ−mπ(dξ)

=

∫ ∞
0

(
1− e−w

)m−1 ∫ ∞
w/t

ξ−mπ(dξ)dw.

First, if m = 1 then (38) implies I0(t) =
∫∞
0
tπ(dξ) = t since π is a probability measure.

Hence (37) yields σX∗(1) = 1.
Now suppose m ≥ 2. Since π ((0, x]) ∼ L(x−1)xα as x→ 0, by putting π̃ = π ◦ g with

g(ξ) = 1/ξ we obtain a probability measure that is regularly varying at infinity, more
precisely

π̃ ((u,∞)) ∼ L(u)u−α, as u→∞.

A variant of Karamata’s theorem for Lebesgue-Stieltjes integrals (Feller 1971, Theorem
VIII.9.2.) gives ∫ t

0

umπ̃(du) ∼ α

m− α
L(t)tm−α, as t→∞. (39)

This result can be understood heuristically by supposing that π̃ has a density π̃ (du) ∼
L(u)αu−α−1du as u→∞. Since the integral

∫ t
0
umπ̃(du) is regularly varying function at

infinity in t, it can be written in the form∫ t

0

umπ̃(du) =
α

m− α
L1(t)t

m−α, (40)

with L1 slowly varying at infinity such that L1(t) ∼ L(t) as t → ∞. Now by the change
of variables u = 1/ξ∫ ∞

w/t

ξ−mπ(dξ) =

∫ t/w

0

umπ̃(du) =
α

m− α
L1(t/w)(t/w)m−α,
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and so

Im−1(t) =
α

m− α
tm−α

∫ ∞
0

L1(t/w)
(
1− e−w

)m−1
wα−mdw

=
α

m− α
tm−α

∫ ∞
0

L1(tz)
(

1− e−
1
z

)m−1
zm−α−2dz. (41)

To show that the integral on the right varies slowly in t, we split it into two parts and
use (Bingham et al. 1989, Proposition 4.1.2). The function (1 − e−1/z) ∼ z−1 as z → ∞
and hence

f(z) =
(

1− e−
1
z

)m−1
zm−α−2

is regularly varying at infinity with index −α−1 and regularly varying at zero with index
m−α− 2. Due to the assumption m > α+ 1, we can choose 0 < δ < m−α− 1 such that∫ 1

0

z−δf(z)dz <∞. (42)

From (40) we have that

L1(t) =
m− α
α

tα−m
∫ t

0

umπ̃(du) ≤ m− α
α

tα,

since π̃ is a probability measure. Hence tδL1(t) is locally bounded on [0,∞). By applying
(Bingham et al. 1989, Proposition 4.1.2(a)) it follows that∫ 1

0

L1(tz)f(z)dz ∼ L1(t)

∫ 1

0

f(z)dz, as t→∞.

On the other hand, for 0 < δ < α ∫ ∞
1

zδf(z)dz <∞

and by application of (Bingham et al. 1989, Proposition 4.1.2(b)) we obtain∫ ∞
1

L1(tz)f(z)dz ∼ L1(t)

∫ ∞
1

f(z)dz, as t→∞.

Going back to (41), we have

Im−1(t) ∼
α

m− α
tm−αL1(t)

∫ ∞
0

(
1− e−

1
z

)m−1
zm−α−2dz

and from (37) we get

σX∗(m) = lim
t→∞

log |Im−1(t)|
log t

= m− α (43)

since due to slow variation of L1, logL1(t)/ log t→ 0 as t→∞.
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Using the relation between cumulants and moments we can now obtain the corre-
sponding asymptotic behavior of the moments. This will yield intermittency as defined
in (7). In central limit type theorems with finite variance one supposes that the mean is

zero. We shall do this here as well and thus set the first cumulant κ
(1)
X = 0.

Theorem 4.2. Suppose that for the non-Gaussian supOU process X the assumptions of
Theorem 4.1 hold with α > 0, κ

(1)
X = 0 and κ

(2)
X 6= 0. If τX∗ is the scaling function (6) of

X∗ = {X∗(t), t ≥ 0}, then for every q ≥ q∗

τX∗(q) = q − α,

where q∗ is the smallest even integer greater than 2α. In particular, for q∗ ≤ p < r

τX∗(p)

p
<
τX∗(r)

r

and hence X∗ is intermittent.

Proof. The marginal distribution of X is selfdecomposable and hence infinitely divisible.
Since it is not Gaussian, the Lévy measure is non-null and by (Gupta et al. 2009, Remark

3.4.) we have that for every even m, κ
(m)
X 6= 0. Using the expression for moment in terms

of cumulants (see e.g. (Peccati & Taqqu 2011, Proposition 3.3.1)), for an even integer m
we have

E|X∗(t)|m = E(X∗(t))m =
m∑
k=1

Bm,k

(
κ
(1)
X∗(t), . . . , κ

(m−k+1)
X∗ (t)

)
, (44)

where Bm,k is the partial Bell polynomial given by (see (Peccati & Taqqu 2011, Definition
2.4.1))

Bm,k(x1, . . . , xm−k+1)

=
∑

r1,...,rm−k+1

m!

r1! · · · rm−k+1!

(x1
1!

)r1
· · ·
(

xm−k+1

(m− k + 1)!

)rm−k+1

(45)

and the sum is over all nonnegative integers r1, . . . , rm−k+1 satisfying

r1 + · · ·+ rm−k+1 = k (46)

and
1r1 + 2r2 + · · ·+ (m− k + 1)rm−k+1 = m. (47)

For l > α + 1 such that κ
(l)
X 6= 0, we have from the proof of Theorem 4.1 that

κ
(l)
X∗(t) ∼ Ll(t)t

l−α as t → ∞ with Ll slowly varying at infinity. On the other hand, if

κ
(l)
X = 0, then also κ

(l)
X∗(t) = 0 by (28). Since by the assumption κ

(1)
X∗(t) = 0, the nonzero

terms of the sum in the expression for Bm,k

(
κ
(1)
X∗(t), . . . , κ

(m−k+1)
X∗ (t)

)
are obtained when

r1 = 0.
Case α < 1. Assume for the moment that α < 1 so that the previous discussion

applies for any l ≥ 2. Now we can write

Bm,k

(
κ
(1)
X∗(t), . . . , κ

(m−k+1)
X∗ (t)

)
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∼
∑

r2,...,rm−k+1

Lr2,...,rm−k+1
(t)t(2−α)r2 · · · t(m−k+1−α)rm−k+1

=
∑

r2,...,rm−k+1

Lr2,...,rm−k+1
(t)t2r2+···+(m−k+1)rm−k+1−α(r2+···+rm−k+1)

=
∑

r2,...,rm−k+1

Lr2,...,rm−k+1
(t)tm−αk, (48)

where Lr2,...m−k+1
(t) are slowly varying functions coming from the product of powers of

L1, . . . , Lm−k+1. If one of the cumulants κ
(3)
X∗(t), . . . , κ

(m−k+1)
X∗ (t) is zero, say κ

(l)
X∗(t), then

(48) should be understood in the sense that the term in the sum is zero unless rl = 0. Since

κ
(m)
X 6= 0, the sum (48) for k = 1 contains at least one term of the form Lr2,...,rm(t)tm−α.

Finally then from (44) we have that for some slowly varying function L̃

E|X∗(t)|m ∼ L̃(t)tm−α (49)

and so τX∗(m) = m− α for any even integer m ≥ 2.

Case α > 1, α /∈ N. Now suppose α ≥ 1 and m is an even integer greater than 2α.
Again, the term for k = 1 in the sum (44) would contain Lr2,...,rm(t)tm−α. It remains to
show that the terms involving cumulants of order j ∈ {2, . . . , bα+ 1c} will not dominate
the tm−α term. Indeed, for j ∈ {2, . . . , bα + 1c} we have that

∫∞
0
ξ−j+1π(dξ) < ∞ and

from (28) and (38) it follows that∣∣∣κ(j)X∗(t)∣∣∣ =
∣∣∣κ(j)X ∣∣∣ j ∣∣∣∣∫ ∞

0

∫ t

0

(
1− e−ξs

)j−1
dsξ−j+1π(dξ)

∣∣∣∣
≤ t

∣∣∣κ(j)X ∣∣∣ j ∫ ∞
0

ξ−j+1π(dξ) =: Cjt. (50)

Considering the terms appearing in the sum (45) and using Theorem 4.1 and (50), one
can see that, up to slowly varying function, each term can be bounded by the following
power of t

tr2 · · · trbα+1c
(
tbα+1c+1−α)rbα+1c+1 · · ·

(
tm−k+1−α)rm−k+1

with nonnegative integers r1, . . . , rm−k+1 satisfying (46) and (47). One will get the highest
power of t by setting all the r′js to zero but one, so that rj ≤ m/j for j ∈ {2, . . . , bα+1c}.
Since j ∈ {2, . . . , bα + 1c}, the highest value is achieved when j = 2, corresponding to
the exponent m/2. Hence, the dominant term as t→∞ coming from cumulants of order

j ∈ {2, . . . , bα + 1c} would be
(
κ
(j)
X∗(t)

)m/2
≤ Ctm/2. If m/2 < m − α, then the term

containing Lr2,...,rm(t)tm−α would dominate the term bounded by tm/2. But this holds,
since m − α > m/2 ⇔ m > 2α and hence we proved (49) for any even integer greater
than 2α.

Case α = 1, 2, · · · . The argument will go along the same lines as the case α > 1,
α /∈ N, however, it may need to be adapted when considering j = bα + 1c = α + 1. If
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∫∞
0
ξ−1π(dξ) < ∞, then the argument applies unchanged. Suppose that

∫∞
0
ξ−1π(dξ) =

∞. For κ
(α+1)
X∗ (t), (39) holds. Given ε > 0 we can take t large enough so that

|κ(α+1)
X∗ (t)| ≤ Ct2−α+ε ≤ Ct1+ε.

By the same argument as in the proof of case α > 1, we would have that if we take ε
small enough, then the term containing Lr2,...,rm(t)tm−α dominates the term bounded by
t(1+ε)m/2. Hence, (49) holds when α ∈ N for every even integer m > 2α.

We have now showed that the theorem holds for any even integer m greater than 2α.
To remove the restriction that m is an even integer we use convexity. We can do so since
the scaling function is always convex ((Grahovac et al. 2016, Proposition 2.1(ii))). Thus,
by applying the following lemma, we conclude that τX∗(q) = q − α for any q ≥ q∗ where
q∗ is the smallest even integer greater than 2α.

The proof uses the following lemma.

Lemma 4.1. Suppose that α > 0 and f is a convex function such that f(q) = q − α for
three values of q, namely q ∈ {x, y, z}, x < y < z. Then the function f must be a straight
line segment, i.e. f(q) = q − α for any q in the interval [x, z].

Proof. Trivially, f(q) ≤ q − α for any q ∈ [x, z]. If q ∈ (x, y), then by convexity

z − y
z − q

f(q) +
y − q
z − q

f(z) ≥ f(y).

Dividing both sides by z−y
z−q > 0 and rearranging yields

f(y) ≥ z − q
z − y

f(y)− y − q
z − y

f(z) =
z − q
z − y

(y − α)− y − q
z − y

(z − α) = q − α.

For q ∈ (y, z) convexity implies

q − y
q − x

f(x) +
y − x
q − x

f(q) ≥ f(y)

and by analogous steps we can deduce f(q) ≥ q − α.

We can now apply Proposition 3.5 to establish the following result for the partial
sum supOU process. The result is similar to that for the integrated process X∗. In fact,
the moments and cumulants of X+(t) and X∗(t) have the same asymptotic behavior as
t→∞, and therefore σX+(m) = σX∗(m).

Theorem 4.3. Suppose that the supOU process satisfies the conditions of Proposition 3.1
and satisfies (24) with some α > 0, κX is analytic in a neighborhood of the origin and let
σX+ be the cumulant based scaling function (11) of the partial sum process {X+(t), t ≥ 0}.
If κ

(1)
X 6= 0, then

σX+(1) = 1.

If m > α + 1 and κ
(m)
X 6= 0, then

σX+(m) = m− α.
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Proof. As in the proof of Theorem 4.1, from Proposition 3.5 we have that

σX+(m) = lim
t→∞

log |Jm−1(t)|
log t

. (51)

If m = 1, then it follows from (35) that

J0(t) =

∫ ∞
0

((
1− e−ξ

)
(btc − 1)−

(
1− e−ξ

)
e−ξ

1− e−(btc−1)ξ

1− e−ξ
+ 1− e−btcξ

)
1

1− e−ξ
π(dξ)

=

∫ ∞
0

(
(btc − 1− e−ξ − e−btcξ

1− e−ξ
+

1− e−btcξ

1− e−ξ

)
π(dξ)

=

∫ ∞
0

btcπ(dξ) = btc,

since π is a probability measure. Now from (51) we get σX+(1) = 1. We now assume

m ≥ 2. From (36), we can write Jm−1(t) = J
(1)
m−1(t) + J

(2)
m−1(t) where

J
(1)
m−1(t) =

btc−1∑
k=1

∫ ∞
0

1− e−mξ

(1− e−ξ)m
(
1− e−kξ

)m
π(dξ) =:

btc−1∑
k=1

J
(1,k)
m−1 ,

J
(2)
m−1(t) =

∫ ∞
0

1

(1− e−ξ)m
(
1− e−btcξ

)m
π(dξ).

We start with the second part J
(2)
m−1(t)

J
(2)
m−1(t) =

∫ ∞
0

1

(1− e−ξ)m
(
1− e−btcξ

)m
π(dξ)

=

∫ ∞
0

1

(1− e−ξ)m
∫ btc
0

mξe−vξ
(
1− e−vξ

)m−1
dv π(dξ).

Changing the variables w = vξ and the order of integration yields

J
(2)
m−1(t) = m

∫ ∞
0

1

(1− e−ξ)m
∫ btcξ
0

e−w
(
1− e−w

)m−1
dw π(dξ)

= m

∫ ∞
0

e−w
(
1− e−w

)m−1 ∫ ∞
w/btc

1

(1− e−ξ)m
π(dξ) dw. (52)

Next, using (24) of ? and setting π̃ = π◦g with g(ξ) = 1/ξ we obtain a probability measure
π̃ that is regularly varying at infinity. More precisely, the tail distribution function

F (u) = π̃ ((u,∞)) (53)

satisfies
F (u) ∼ L(u)u−α, as u→∞.
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Now by the change of variables u = 1/ξ∫ ∞
w/btc

1

(1− e−ξ)m
π(dξ) = −

∫ btc/w
0

1(
1− e− 1

u

)mdF (u) = −
∫ btc/w
0

R2(u)dF (u), (54)

where

R2(u) =
1(

1− e− 1
u

)m . (55)

We now show that (54) is regularly varying in t as t → ∞. Since (1 − e−1/u) ∼ u−1 as
u→∞, it follows that R2 is regularly varying at infinity with index m, and we can write
it in the form R2(u) = L2(u)um with L2 slowly varying at infinity. Integration by parts
gives

−
∫ t

x

R2(u)dF (u) = −R2(t)F (t) +R2(x)F (x) +

∫ t

x

R′2(u)F (u)du.

We now let x → 0. The integral on the right converges as x → 0 since m − α − 1 > 0.
Since F is the tail distribution function, F (x) → 1 as x → 0, and R2(x) → 1 as x → 0
from its definition (55). Thus it follows

−
∫ t
0
R2(u)dF (u)

R2(t)F (t)
= −1 +

1

R2(t)F (t)
+

∫ t
0
R′2(u)F (u)du

tR′2(t)F (t)

tR′2(t)

R2(t)
. (56)

One can easily show that R′2 is regularly varying at infinity with index m − 1 and so
u 7→ R′2(u)F (u) is regularly varying with index m − α − 1. By Karamata’s theorem
(Bingham et al. 1989, Theorem 1.5.11) we have that∫ t

0
R′2(u)F (u)du

tR′2(t)F (t)
→ 1

m− α
, as t→∞.

Furthermore,
tR′2(t)

R2(t)
→ m, as t→∞

and
R2(t)F (t) ∼ tm−αL(t)L2(t)→∞, as t→∞.

Setting this in (56) we get

−
∫ t

0

R2(u)dF (u) ∼ −R2(t)F (t) + 1 +R2(t)F (t)
m

m− α
,

which can be written in the form

−
∫ t

0

R2(u)dF (u) =
α

m− α
L̃2(t)t

m−α, (57)
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where L̃2(t) is slowly varying at infinity such that L̃2(t) ∼ L(t)L2(t) as t → ∞. Hence,
using (52), (54) and (57) we obtain

J
(2)
m−1(t) =

α

m− α
btcm−α

∫ ∞
0

L̃2 (btc/w) e−w
(
1− e−w

)m−1
wα−mdw

=
α

m− α
btcm−α

∫ ∞
0

L̃2 (btcz) e−
1
z

(
1− e−

1
z

)m−1
zm−α−2dz,

a relation similar to that in (41) in the proof of Theorem 4.1. The function

f(z) = e−
1
z

(
1− e−

1
z

)m−1
zm−α−2

is regularly varying at infinity with index −α − 1 and decays exponentially to zero as
z → 0. Therefore, for any δ > 0, (42) will hold and the rest of the arguments apply
equally as in the proof of Theorem 4.1 to show that

J
(2)
m−1(t) ∼

α

m− α
btcm−αL̃2 (btc)

∫ ∞
0

e−
1
z

(
1− e−

1
z

)m−1
zm−α−2dz.

Thus limt→∞ log J
(2)
m−1(t)/ log t = m − α. Since J

(2)
m−1(t) is non-negative as is J

(1)
m−1(t), it

now suffices to show that J
(1)
m−1(t) does not grow faster than J

(2)
m−1(t) as t → ∞. This

would complete the proof.
The argument proceeds as in the previous part of the proof. First we obtain

J
(1,k)
m−1 =

∫ ∞
0

1− e−mξ

(1− e−ξ)m
(
1− e−kξ

)m
π(dξ)

= m

∫ ∞
0

e−w
(
1− e−w

)m−1 ∫ ∞
w/k

1− e−mξ

(1− e−ξ)m
π(dξ) dw

= m

∫ ∞
0

e−w
(
1− e−w

)m−1(−∫ k/w

0

R1(u)dF (u)

)
dw

where F is defined in (53) and R1 denotes the function

R1(u) =
1− e−mu(
1− e− 1

u

)m .
One can check by definition that R1 is regularly varying at infinity with index m − 1
and therefore can be written in the form R1(u) = L1(u)um−1 with L1 slowly varying at
infinity. In the same way we obtain the analog of (56)

−
∫ t
0
R1(u)dF (u)

R1(t)F (t)
= −1 +

1

R1(t)F (t)
+

∫ t
0
R′1(u)F (u)du

tR′1(t)F (t)

tR′1(t)

R1(t)
.
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It can be shown that R′1 is regularly varying at infinity with index m − 2 and so u 7→
R′1(u)F (u) is regularly varying with index m−α− 2. Since m−α− 2 > −1, Karamata’s
theorem (Bingham et al. 1989, Theorem 1.5.11) gives∫ t

0
R′1(u)F (u)du

tR′1(t)F (t)
→ 1

m− α− 1
, as t→∞.

Since
tR′1(t)

R1(t)
→ m− 1, as t→∞,

and
1

R1(t)F (t)
→ 0, as t→∞,

it follows that

−
∫ t

0

R1(u)dF (u) =
α

m− α− 1
L̃1(t)t

m−α−1,

where L̃1(t) is slowly varying at infinity such that L̃1(t) ∼ L(t)L1(t) as t → ∞. Finally,
then

J
(1,k)
m−1 =

α

m− α
km−α−1

∫ ∞
0

L̃1 (k/w) e−w
(
1− e−w

)m−1
wα−m+1dw

=
α

m− α
km−α−1

∫ ∞
0

L̃1 (kz) e−
1
z

(
1− e−

1
z

)m−1
zm−α−3dz

and the same argument as in the first part of the proof can be used to show that

J
(1,k)
m−1 ∼

α

m− α
km−α−1L̃1 (k)

∫ ∞
0

e−
1
z

(
1− e−

1
z

)m−1
zm−α−3dz.

Since L̃1 is slowly varying, for any δ > 0 there is k0 such that L̃1(k) ≤ kδ for k ≥ k0. By
using Euler-Maclaurin formula ((Abramowitz & Stegun 1964, Eq. 23.1.30)), we have that
as t→∞

J
(1)
m−1(t) =

btc−1∑
k=1

J
(1,k)
m−1 =

k0−1∑
k=1

J
(1,k)
m−1 +

btc−1∑
k=k0

J
(1,k)
m−1

= O(1) + C2

btc−1∑
k=k0

km−α−1+δ

= O(1) + C2

(∫ btc−1
k0

xm−α−1+δdx+
1

2

(
(btc − 1)m−α−1+δ + km−α−1+δ0

)
+O

(
tm−α−2−δ

))
= O

(
tm−α+δ

)
.
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Since δ was arbitrary, we conclude that

lim
t→∞

log J
(1)
m−1(t)

log t
≤ m− α,

which completes the proof.

Set α = 2(1 − H) with H ∈ (1/2, 1) so that α ∈ (0, 1). A special case of Theorem
4.3 was proved in Grahovac et al. (2016) for the specific situation of the Example 3.2.
In the notation of Example 3.2, the case considered there corresponds to a discrete type
superposition X(t) =

∑∞
k=1X

(k)(t) obtained by choosing

λk = λ/k, λ > 0 and pk = Cζ(1 + 2(1−H))/k1+2(1−H), C > 0,

where ζ is the Riemann zeta function. In addition, it is assumed that the cumulants of
the standard OU type processes {X(k)(t)} scale in a specific way. Under these conditions,

the cumulants of the centered partial sum process S(t) =
∑btc

i=1 (X(i)− EX(i)) are shown
to have the form

κ
(m)
S (Nt) = CmL(N)bNtcm−2(1−H) (1 + o(1)) ,

as N →∞, where Cm is a positive constant and L a slowly varying function.
Using the same argument as in the proof of Theorem 4.2, we obtain the following

result on intermittency of the partial sum process.

Theorem 4.4. Suppose that for the non-Gaussian supOU process X the assumptions of
Theorem 4.1 hold with α > 0, κ

(1)
X = 0 and κ

(2)
X 6= 0. If τX+ is the scaling function (6) of

X+ = {X+(t), t ≥ 0}, then for every q ≥ q∗

τX+(q) = q − α.

where q∗ is the smallest even integer greater than 2α. Thus X+ is intermittent.

Remark 4.1. In Example 4.1 (finite superpositions case) and Example 4.2 (Gaussian case),
we have shown that there is no intermittency. Note that these two cases are clearly not
covered in Theorems 4.2 and 4.4 where we suppose a non-Gaussian process and regular
variation (24) of measure π.

On the other hand, particular examples of supOU processes satisfying conditions of
Theorems 4.2 and 4.4 can be obtained by choosing for the marginal distribution any
selfdecomposable distribution with zero mean and analytic cumulant function (e.g. dis-
tributions from Examples 3.6 and 3.7) and by taking the measure π that satisfies (24)
(e.g. measures given in Examples 3.3, 3.4 and 3.5). For any such combination we obtain
an intermittent supOU process. Under these conditions, both the integrated and the
partial sum process are intermittent. This implies that (8) and (9) cannot both hold.
The study of limit theorems for integrated supOU processes and how they relate to the
intermittency property will appear in future work.
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